Stony Brook University Logo and Title
Photo: Stony Brook banners in front of trees
News Page Title Bar
 
 Top News
 General University News
 SB Medicine News
 Children's Hospital
 Research
 Faculty/Student Awards
 Conferences & Events
 
 Media Advisories
 
 Press Clips
 
 Student Media Briefings
 
 Contact Media Relations

General University News
Press Release


First Multi-Year Nearshore Survey Of Antarctic Krill Reveals High Density, Stable Population In Shallow, Coastal Waters

Aug 4, 2010 - 12:59:06 PM

Email this article
 Printer friendly page
Using a small boat, researchers were able to measure the amount of krill in shallow, close to shore areas near fur seal and penguin colonies on Livingston Island. These waters were previously inaccessible to researchers. Photo credit: Derek Needham.
STONY BROOK, N.Y., August 4, 2010 – Using smaller vessels that allow access to shallow, nearshore waters, researchers from Stony Brook University and the Southwest Fisheries Science Center conducted the first multi-year survey of the population of Antarctic krill (Euphausia superba) in coastal waters near Livingston Island and discovered that nearshore waters had significantly higher krill biomass density than offshore waters. They also found that the nearshore waters had less interannual variation than offshore waters. These findings were published in the July 2010 issue of the Canadian Journal of Fisheries and Aquatic Sciences.

Antarctic krill are tiny shrimp-like organisms that are an integral part of the Southern Ocean food chain. Krill are an important food resource for penguins, seals, and some whales in the Southern Ocean, and are harvested for use in aquaculture feed and human dietary supplements.

“Nearshore krill biomass is generally most accessible and attractive to land-breeding predators as well as to human fishers competing for this valuable resource,” said Dr. Warren.

Antarctic krill (Euphausia superba) can be up to 5 cm in length and are the primary food source for most of the marine mammals and seabirds in Antarctica. They are also commercially fished so it is important to ensure that human fishing activities do not negatively impact the native animals that rely on krill for energy for themselves and their offspring. Photo credit: US AMLR Program.
Because large research vessels cannot safely travel in shallow nearshore waters, previous population surveys of Antarctic krill were restricted to offshore sampling. With funding provided by the National Science Foundation Office of Polar Programs and the United States Antarctic Marine Living Resources program, Dr. Joseph Warren, assistant professor in the School of Marine and Atmospheric Sciences at Stony Brook University, and Dr. David Demer, leader of the Advanced Survey Technologies Program at the Southwest Fisheries Science Center, conducted six acoustic surveys from small boats in the nearshore waters north of Livingston Island, Antarctica. From 2000 through 2007, they examined the abundance and distribution of Antarctic krill in coastal waters within several miles of shore. Deploying their scientific equipment from a 6 m inflatable boat, Warren and Demer were able to carry out their measurements in water ranging from 500 to 2 m in depth. They compared their observations in the nearshore waters with those from offshore surveys of the western Scotia Sea conducted during the same year.

“Although the spatial area of our nearshore survey is quite small when compared with that of the entire Scotia Sea, the high and stable densities of krill in shallow water may be more important ecologically than the offshore krill,” said Dr. Warren.

About the School of Marine and Atmospheric Sciences at Stony Brook University
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education, and public service. With more than 85 faculty and staff and more than 500 students engaged in interdisciplinary research and education, SoMAS is at the forefront of advancing knowledge and discovering and resolving environmental challenges affecting the oceans and atmosphere on both regional and global scales.


© Stony Brook University 2013

Top of Page